Math 241 Winter 2023 Lecture 10

Feb 19-8:47 AM

Eraph $y=\tan \left(\frac{1}{2} x\right)$

$$
\begin{array}{lll|lll}
-\frac{\pi}{2}<\frac{1}{2} x & <\frac{\pi}{2} & \frac{x}{2} x & -\pi & 0 & \pi \\
\text { Multiply by } 2 & \frac{\pi}{2} & 0 & \frac{\pi}{2} \\
\hline-\pi<x<\pi & \tan \frac{1}{2} x & \text { und. } & 0 & \text { und. } \\
-\pi<\text { V.A. } & & \text { V.A. }
\end{array}
$$

Graph $y=\tan \left(x-\frac{\pi}{2}\right)$

Jan 19-7:21 AM
Graph $y=\tan \left(2 x+\frac{\pi}{2}\right)$
$-\frac{\pi}{2}<2 x+\frac{\pi}{2}<\frac{\pi}{2}$
Subtract $\frac{\pi}{2}$

$$
\begin{array}{cc|ccc|}
-\pi / 2-\frac{\pi}{2}<2 x+\pi / 2-\pi / 2<\pi / 2-\pi / 2 & & & \\
-\pi<2 x<0 & x & -\pi / 2 & -\pi / 4 & 0 \\
\hline \text { Divide by 2 } & 2 x+\pi / 2 & -\pi / 2 & 0 & \pi / 2 \\
-\frac{\tan (2 x+\pi / 2)}{} \text { 百 } & \text { und. } & 0 & \text { Und. } \\
& \text { V.A. } & & \text { V.A. }
\end{array}
$$

Jan 19-7:37 AM

Jan 19-7:52 AM

Graph $y=\csc x$

1) Graph $y=\operatorname{Sin} x$
2) Do reciprocal
3) V.A. at where $\sin x$ crosses x-axis.

Graph $y=\operatorname{Csc}\left(\frac{\pi}{2} x\right)$

Graph $y=1+\csc (x+\pi)$

1) Graph $y=\sin (x+\pi)$
2) Draw V.A.
3) Graph the reciprocal
4) Shift up 1
隹

Graph $y=-3 \csc (x+\pi)$

1) Graph $y=3 \sin (x+\pi)$
2) Draw V.A.
3) Draw reciprocal
4) take care of reflection about

Graph $y=-1+\frac{1}{2} \csc (\pi x-\pi)$

1) Draw $y=\frac{1}{2} \sin (\pi x-\pi)$
$0 \leq \pi x-\pi \leq 2 \pi$
Add π
2) Draw V.A.
$\pi \leq \pi x \leq 3 \pi$
Divide by π
3) Draw reciprocals

$$
\begin{aligned}
& 1 \leq x \leq 3 \\
& \frac{1}{2}-1=-\frac{1}{2}
\end{aligned}
$$

4) shift down 1 .

Jan 19-8:56 AM

Graph $y=\operatorname{Sec}(x-\pi) \quad 0 \leq x-\pi \leq 2 \pi$

1) Graph $y=\cos (x-\pi)$
2) Draw Y.A.
3) Draw reciprocal

Graph $y=-2 \operatorname{Sec}\left(\frac{\pi}{2} x\right)$

1) Graph $y=2 \cos \left(\frac{\pi}{2} x\right)$

$$
\begin{gathered}
0 \leq \frac{\pi}{2} x \leq 2 \pi \\
0 \leq \pi x \leq 4 \pi \\
0 \leq x \leq 4
\end{gathered}
$$

2) Draw V.A.
3) Draw reciprocals
4) Take care of reflections

Jan 19-9:18 AM

Graph $y=3+\operatorname{Sec}(-x+\pi)$
Recall $\sin (-x)=-\sin x$

$$
\csc (-x)=-\csc x
$$

$$
\cos (-x)=\cos x
$$

$$
\sec (-x)=\operatorname{Sec} x
$$

$\tan (-x)=-\tan x$

$$
\cot (-x)=-\cot x
$$

$\operatorname{Sec}(-x+\pi)=\operatorname{Sec}[-(x-\pi)]=\operatorname{Sec}(x-\pi)$
My Graph $y=3+\operatorname{Sec}(x-\pi)$

1) Graph $y=\cos (x-\pi) \quad 0 \leq x-\pi \leq 2 \pi$
2) Draw V.A.
3) Do reciprocals
4) shift

3 up

Graph $y=3+\operatorname{Sec}(-x+\pi)$
$0 \leq-x+\pi \leq 2 \pi$

1) Graph $y=\cos (-x+\pi)$
2) Draw V.A.
3) Draw reciprocal
$-\pi \leq-x \leq \pi$
Multiply by -1
$\pi \geq x \geq-\pi$
Same as
$-\pi \leq x \leq \pi$

Jan 19-9:46 AM

$$
\begin{array}{l|l}
y=x^{3} \\
x & y \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline 2 & 8 \\
0 \leq x \leq 2
\end{array}
$$

Graph $y=\cot x$

1) Graph $y=\tan x$
2) Draw V.A.
3) Do reciprocal
for $\cot x$

Jan 19-10:19 AM

Graph $y=\cot \left(\frac{1}{2} x\right)$

$$
\begin{aligned}
& 0<\frac{1}{2} x<\pi \\
& 0<x<2 \pi
\end{aligned}
$$

V.A. at 0 , and 2π

Cross x-axis at π.

Graph $y=-\cot \left(\frac{1}{4} x+\frac{\pi}{2}\right)$

Jan 19-10:28 AM
Graph $y=2+\cot (2 \pi x)$

Let's trace this graph.
If $x=\frac{1}{4}, y=2+\cot \left(2 \pi \cdot \frac{1}{4}\right)=2+\cot \pi / 2$

$$
\cot \pi / 2=\frac{\cos \pi / 2}{\sin \pi / 2}=\frac{0}{1}=0
$$

$$
\begin{aligned}
& =2+0 \\
& =2
\end{aligned}
$$

Graph $y=4 \sin x \cos x$

$$
\begin{aligned}
& y=2 \cdot \underbrace{2 \sin x \cos x} \\
& y=2 \sin 2 x \\
& 0 \leq 2 x \leq 2 \pi
\end{aligned}
$$

Amplitude

$$
0 \leq x \leq \pi
$$

Jan 19-10:39 AM

Graph $y=\cos ^{2} \frac{1}{2} x-\sin ^{2} \frac{1}{2} x$

$$
\begin{aligned}
& y=\cos 2\left(\frac{1}{2} x\right) \\
& y=\cos x
\end{aligned}
$$

Graph $\quad y=4 \sin ^{2} x+4 \cos ^{2} x$

$$
\begin{aligned}
& =4(\underbrace{\sin ^{2} x+\cos ^{2} x}) \\
& y=4
\end{aligned}
$$

Seraph $y=4 \underbrace{\tan x \cot x}_{1}$

$$
\begin{aligned}
& 5 \cdot \frac{1}{5}=1 \\
& \frac{2}{3} \cdot \frac{3}{2}=1 \\
& 0 \cdot \frac{1}{0}=1
\end{aligned}
$$

$$
\text { If } x=0
$$

$$
y=4 \tan 0 \cdot \cot 0
$$

$\tan 0=\frac{\sin 0}{\cos 0}=\frac{0}{7}=0$

$$
=4.0 \text {. }
$$

$$
\text { If } x=\frac{\pi}{2}
$$

$\cot 0=\frac{1}{\tan 0}=\frac{1}{0}$ undefined. $\tan \frac{\pi}{2}=\frac{\sin \pi / 2}{\cos \pi / 2}=\frac{1}{0}$ undefined.

$$
\begin{aligned}
& \operatorname{Cos} 2 x=\operatorname{Cos}^{2} x-\sin ^{2} x \\
& \cos 2 x=2 \cos ^{2} x-1 \\
& 1+\cos 2 x=2 \cos ^{2} x \\
& \frac{1+\cos 2 x}{2}=\cos ^{2} x \\
& \operatorname{Cos} x= \pm \sqrt{\frac{1+\cos 2 x}{2}} \\
& \begin{array}{c}
\underset{\rightarrow}{\cos 2 x=1} \underset{\rightarrow}{\theta} \sin ^{2} x \\
2 \sin ^{2} x=1-\cos 2 x
\end{array} \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& \sin x= \pm \sqrt{\frac{1-\cos 2 x}{2}} \\
& \text { Half-Angle formula } \\
& \tan \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{1+\cos x}} \quad \tan \frac{x}{2}=\frac{\sin x}{1+\cos x} \\
& \tan \frac{x}{2}=\frac{1-\cos x}{\sin x}
\end{aligned}
$$

find exact value of

$$
\begin{aligned}
& \tan 22.5^{\circ}=\tan \frac{45^{\circ}}{2}=\frac{\sin 45^{\circ}}{1+\cos 45^{\circ}} \\
& \tan \frac{x}{2}=\frac{\sin x}{1+\cos x}=\frac{\frac{\sqrt{2}}{2}}{1+\frac{\sqrt{2}}{2}}=\frac{\sqrt{2}}{2+\sqrt{2}} \\
& =\frac{\sqrt{2}(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})}=\frac{2 \sqrt{2}-\sqrt{4}}{4-2 \sqrt{2}+2 \sqrt{2}-\sqrt{4}}=\frac{2 \sqrt{2}-2}{4-2} \\
& {\left[\tan 22.5^{\circ}=\sqrt{2}-1\right]=\frac{2 \sqrt{2}-2}{2}} \\
& =\frac{\not 2(\sqrt{2}-1)}{2}
\end{aligned}
$$

find exact value for $\operatorname{Sin} 15^{\circ}$.

$$
\begin{aligned}
15^{\circ} & =45^{\circ}-30^{\circ}, \quad 15^{\circ}=\frac{30^{\circ}}{2} \\
\sin 15^{\circ} & =\sin \left(45^{\circ}-30^{\circ}\right) \quad \sin (A-B)=\sin A \cos B- \\
& =\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

QI
$\operatorname{Sin} 15^{\circ}=\operatorname{Sin} \frac{30^{\circ}}{2}= \pm \sqrt{\frac{1-\cos 30^{\circ}}{2}} \quad \approx .259$

$$
\begin{aligned}
& =\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}} \\
& =\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{\frac{2}{2}} \\
& \approx .259
\end{aligned}
$$

Jan 19-11:09 AM

$$
\begin{aligned}
& \text { Show } \frac{\sqrt{6}-\sqrt{2}}{4}=\frac{\sqrt{2-\sqrt{3}}}{2} \\
& 2(\sqrt{6}-\sqrt{2}) \stackrel{?}{=} 4 \int_{0} \sqrt{2-\sqrt{3}} \\
& \begin{array}{l}
2(\sqrt{6}-\sqrt{2}) \stackrel{?}{=} \sqrt{16(2-\sqrt{3})} \quad\left\{\begin{array}{l}
4 \neq-4 \\
4^{2}=(-4)^{2} \\
16=16
\end{array}\right. \\
{[2(\sqrt{6}-\sqrt{2})]^{2^{2}}=[\sqrt{16(2-\sqrt{3})}]^{2^{2}}=\left[\begin{array}{l}
\end{array}\right]}
\end{array} \\
& 4(\sqrt{6}-\sqrt{2})(\sqrt{6}-\sqrt{2}) \stackrel{?}{=} 16(2-\sqrt{3}) \\
& 4(6-\sqrt{12}-\sqrt{12}+2) \stackrel{?}{=} 16(2-\sqrt{3}) \\
& 4(8-2 \sqrt{12}) \stackrel{?}{=} 16(2-\sqrt{3}) \\
& 4(8-2 \sqrt{4} \sqrt{3})^{?}=16(2-\sqrt{3}) \\
& 4(8-4 \sqrt{3}) \stackrel{?}{=} 16(2-\sqrt{3}) \\
& 4 \cdot 4(2-\sqrt{3}) \stackrel{?}{=} 16(2-\sqrt{3})
\end{aligned}
$$

$$
\sqrt{x^{2}}=x \quad \text { if } x \geq 0
$$

try to work on one side to get to other side to show

$$
\frac{\sqrt{6}-\sqrt{2}}{4}=\frac{\sqrt{2-\sqrt{3}}}{2}
$$

Jan 19-11:29 AM

